Course Number and Name

BEE304 & Electromagnetic Theory

Credits and Contact Hours

3 & 45

Course Coordinator's Name

Mr.K.S.S.Prasad

Text Books and References

Text Books:

- 1. K.A.Gangadhar, "Field Theory" Khanna Publishers, New Delhi. 1997
- 2. William Hayt, "Engineering Electromagnetics" McGraw Hill, New York 1996

References:

- 1. S. Selly, "Introduction to electromagnetic fields" McGraw Hill, 1958
- 2. http://nptel.ac.in/downloads/115101005

Course Description

The purpose of this course is to enable the students to have a sound knowledge about the theory and problems in Electromagnetic Fields.

Prerequisites	Co-requisites							
Engg Mathematics-I, Engg Physics -I, Engg	Nil							
Physics-II ,Basic Electrical Engineering								
required, elective, or selected elective (as per Table 5-1)								
Required								

Course Outcomes (COs)

CO1: Apply vector calculus to understand the behavior of static electric fields in standard configurations.

CO2: To lay the foundations of electromagnetism and to understand the concepts of Electrostatics and their applications.

CO3: To understand the concepts of Magneto statics and their applications.

CO4: Apply the concepts of induction to evaluate inductance and applications.

CO5: To understand the concept of Electromagnetic Fields, waves and wave propagation.

Student Outcomes (SOs) from Criterion 3 covered by this Course

COs/SOs	a	b	c	d	e	f	g	h	i	j	k	1
CO1	Н	M							M			M
CO2	Н	Н							M			M
CO3	Н	Н							M			M
CO4	Н	Н							M			M
CO5	Н	Н							M			M

List of Topics Covered

UNIT I ELECTROSTATICS

9

The field concept – sources of electromagnetic fields – Co-ordinate Systems– Coulomb's law – electric field intensity – electric field due to point charge, line charge, surface charge and volume charge distribution – electric flux density – Gauss's law – electric potential – potential gradient – divergence theorem – Poisson's and Laplace equations.

UNIT HELECTROSTATICSAPPLICATIONS

9

Conductor and dielectrics – field due to dipole – moment – boundary conditions and conductor surfaces – capacitor – capacitance of system of conductors – energy density and pressure in electric fields – force between charges – charge in motion – conduction current – displacement current.

UNIT HIMAGNETOSTATICS

9

Force on a current element – Biot Savart's law – force between current carrying conductors–Ampere's law – magnetic potential – boundary conditions at the magnetic surfaces – examples

UNITIVMAGNETOSTATICS APPLICATIONS

9

Faraday's law of electromagnetic induction – inductance of solenoids, toroids, transmission lines and cable – Mutual inductance of series and parallel circuits – energy stored in magnetic fields – electromagnets – forces and torques on closed circuits – magnetic circuits – examples.

UNIT VELECTROMAGNETIC FIELDS AND WAVE PROPAGATION9

Modified amperes circuital law – Maxwell's equation in point and integral forms – wave equation – plane waves in free space – polarization – reflection and transmission of waves – pointing theorems and slepain vector – energy in electromagnetic fields.